Antiviral potential in algotherapy.

Authors

  • Jorge Enrique Martín Cordero Centro de Investigaciones Médico Quirúrgicas (CIMEQ), La Habana.
  • Rafael Ledesma Rosa Hospital de Rehabilitación “Julio Díaz González”, La Habana.
  • Marleny Viera García Hospital de Rehabilitación “Julio Díaz González”, La Habana.

Keywords:

coronavirus, marine organisms, algae, microalgae, antiviral effect, SARS-CoV, SARS-CoV-2.

Abstract

Oceans have been the most valuable food source on Earth. Almost half of atmospheric oxygen is produced by seaweed. Besides, it is considered a natural and attractive biotechnological source of new antibiotics. The antimicrobial activity of its compounds is a promising basis for designing innovative pharmaceutical products. They can become both a reliable alternative to traditional antimicrobial agents, and an effective synergistic adjunct to antibiotic therapy. This review focuses on algae that have been shown to possess immunomodulatory properties from their bioactive molecules, with a particular interest on antiviral activity and on compiling information related to their influence on the novel coronavirus. The objective is to empower rehabilitators and the scientific community with this contribution of thalassotherapy in the struggle against COVID-19. The review is based on references from the main databases such as MedLine, Enbase, Lilacs, SciELO, Pubmed and Virtual Health Library. The methodology used was the search and selection of the most relevant articles on the subject. Documentation supporting the antiviral potential of algae-derived molecules, and specifically against SARS-CoV-2, is particularly broad. Despite the progress on the field, studies on practical implications, clinical research and demonstration scale are still needed.

Downloads

Download data is not yet available.

References

1. Hamidi M, Safarzadeh-Kozani P, Safarzadeh-Kozani P, Pierre G, Michaud P, Delattre C. Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications? Mar Drugs. 2020 [acceso 02/07/2021];18(1):28. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7024282/ DOI:10.3390/md18010028

2. Besednova NN, Andryukov BG, Zaporozhets TS, Kryzhanovsky SP, Kuznetsova TA, Fedyanina LN, et al. Algae Polyphenolic Compounds and Modern Antibacterial Strategies: Current Achievements and Immediate Prospects. Biomedicines. 2020 [acceso 05/07/2021];8(9)342. Disponible en: https://www.mdpi.com/2227-9059/8/9/342/htm DOI:10.3390/biomedicines8090342

3. ? imat V, Elabed N, Kulawik P, Ceylan Z, Jamroz E, Yazgan H, et al. Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Mar Drugs. 2020 [acceso 12/07/2021];18(12):627. Disponible en: https://www.mdpi.com/1660-3397/18/12/627 DOI:10.3390/md18120627

4. Besednova NN, Andryukov BG, Zaporozhets TS, Kryzhanovsky SP, Fedyanina LN, Kuznetsova TA et al. Antiviral Effects of Polyphenols from Marine Algae. Biomedicines 2021 [acceso 05/07/2021];9(2):200. Disponible en: https://www.mdpi.com/2227-9059/9/2/200/htm DOI:10.3390/biomedicines9020200 .

5. Ahmad B, Shah M, Choi S. Oceans as a Source of Immunotherapy. Mar Drugs. 2020 [acceso 12/07/2021];17(5):282. Disponible en: https://ww.mdpi.com/1660-3397/17/5/282/htm DOI:10.3390/md17050282

6. Chia WY, Kok H, Chew KW, Low SS, Show PL. Can algae contribute to the war with Covid-19? Bioengineered. 2021 [acceso 09/07/2021]; 12(1):1226-37 Disponible en: https://www.tandfonline.com/ DOI:/full/10.1080/21655979.2021.1910432 .

7. Zaporozhets TS, Besednova NN. Biologically active compounds from marine organisms in the strategies for combating coronaviruses. AIMS Microbiol 2020 [acceso 09/07/2021]; 6(4):470–94. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755586/ DOI:10.3934/microbiol.2020028

8. Fayyaz M, Chew KW, Show PL. Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnol Adv. 2020 [acceso 20/02/2021];43:107554. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0734975020300513?via%3Dihub,doi:doi.org/10.1016/j.biotechadv.2020.107554

9. Chen X, Song L, Wang H, Liu S, Yu H, Wang X, et al. Partial Characterization, the Immune Modulation and Anticancer Activities of Sulfated Polysaccharides from Filamentous Microalgae Tribonema sp. Molecules. 2019 [acceso 12/07/2021]; 24(2):322. Disponible en: https://www.mdpi.com/1420-3049/24/2/322/htm,doi:10.3390/molecules 24020322.

10. Hans N, Malik A, Naik S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour Technol Rep. 2021 [acceso 05/07/2021];13:100623. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836841/,doi:10.1016/j.biteb.2020.100623

11. Sami N, Ahmad R, Fatma T. Exploring algae and cyanobacteria as a promising natural source of antiviral drug against SARS-CoV-2. Biomed J. 2021 [acceso 09/07/2021]; 44(1): 54–62. Disponible en: https://www.sciencedirect.com/science/article/pii/S2319417020302122,doi:10.1016/j.bj.2020.11.014.

12. Kuznetsova TA, Andryukov BG, Makarenkova ID, Zaporozhets TS, Besednova NN, Fedyanina LN, et al. The Potency of Seaweed Sulfated Polysaccharides for the Correction of Hemostasis Disorders in COVID-19. Molecules. 2021 [acceso 12/07/2021];26(9):2618. Disponible en:https://www.mdpi.com/1420-3049/26/9/2618/htm,doi:10.3390/molecules26092618

13. Talukdar J, Bhadra B, Dattaroy T, Nagle V, Dasgupta S. Potential of natural astaxanthin in alleviating the risk of cytokine storm in COVID-19. Biomed Pharmacother. 2020 [acceso 30/03/2021]; 132:110886. Disponible en: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC7566765/,doi:10.1016/j.biopha.2020.110886.

14. Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3 CL protease by flavonoids. J. Enzyme Inhib. Med. Chem. 2020 [acceso 10/05/2021];35(1):145–51. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882434/

15. Song S, Peng H, Wang Q, Liu Z, Dong X, Wen C, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct 2020 [acceso 02/07/2021]; 23;11(9):7415-20. Disponible en: https://europepmc.org/article/med/32966484 DOI:10.1039/d0fo02017f

16. Singh S, Sk MS, Sonawane A, Kar P, Sadhukhan Se. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn. 2021 [acceso 10/05/2021];39(16):6249-64. DOI: 10.1080/07391102.2020.1796810

17. Vilaplana I, Batalla M. Nutrición y Sistema Inmunitario. Farmacia Profesional. 2015 [acceso 10/05/2021];29(6):22-5. Disponible en: https://www.elsevier.es/es-revista-farmacia-profesional-3-articulo-nutricion-sistema-inmunitario-X0213932415442091

18. del Valle-Pérez L, Macías-Abraham C, Torres-Leyva I. Efecto in vitro de la espirulina sobre la respuesta inmune. Rev Cubana de Hematol, Inmunol Hemoter. 2002 [acceso 10/05/2021];18(2). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-02892002000200006

19. Díaz-Domínguez G, Marsán Suárez V, del Valle-Pérez L. Principales propiedades inmunomoduladoras y antinflamatorias de la ficobiliproteína C-ficocianina. Rev Cubana Hematología e Inmunología de La Habana. 2016 [acceso 10/05/2021] 32(4). Disponible en: http://www.revhematologia.sld.cu/index.php/hih/article/view/451

20. Ledesma Rosa R, Viera Garcia M. Guías de Buenas Prácticas de Hidrología Médica. 1ra Edición, Ciudad de Panamá: Editora OPS; 2012.

Published

2022-01-08

How to Cite

1.
Martín Cordero JE, Ledesma Rosa R, Viera García M. Antiviral potential in algotherapy. RCMFR [Internet]. 2022 Jan. 8 [cited 2025 Apr. 29];14(1). Available from: https://revrehabilitacion.sld.cu/index.php/reh/article/view/737

Issue

Section

Artículo de revisión