Functional Analysis by Clinical Domains in Relapsing-Remitting Multiple Sclerosis
Keywords:
relapsing-remitting multiple sclerosis, disease-modifying antirheumatic drugs, functional domains, disability, functional analysis, neurological rehabilitationAbstract
Introduction: Relapsing-remitting multiple sclerosis is characterized by symptom fluctuation and variable functional impairment across clinical domains. Disease-modifying antirheumatic drugs (DMARDs) have demonstrated immunological efficacy, although their specific functional impact requires further analysis.
Objective: To evaluate clinical changes in symptoms and functional domains in patients with relapsing-remitting multiple sclerosis treated with DMARDs, using frequency analysis and statistical tests of change.
Methods: Observational, longitudinal, and analytical study with 28 patients with relapsing-remitting multiple sclerosis treated with cladribine, interferon beta, or ocrelizumab. Symptoms were recorded at baseline and at the end of follow-up, grouped by functional domains (motor, sensory, visual, autonomic, and cognitive/affective). The McNemar test was applied to assess intraindividual change (p < 0.05).
Results: Significant improvements were observed in four functional domains: motor (p = 0.0041), visual (p = 0.0162), autonomic (p = 0.0215), and cognitive/affective (p = 0.0045). The sensory domain showed no statistically significant changes. Overall, the frequency of symptomatic patients was reduced in certain domains by up to 90 %.
Conclusions: Functional domain analysis is a complementary and sensitive tool for detecting specific clinical improvements not evident in the expanded disability status scale. Its integration into rehabilitation practice facilitates comprehensive assessment and personalized clinical follow-up in patients with relapsing-remitting multiple sclerosis.
Downloads
References
1. Filippi M, Rocca MA, Ciccarelli O, De Stefano N, Evangelou N, Kappos L, et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016;15(3):292-303. DOI: https://doi.org/10.1016/S1474-4422 (15)00393-2
2. Ontaneda D, Fox RJ, Chataway J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol. 2015;14(2):208-23. DOI: https://doi.org/10.1016/S1474-4422(14)70264-9
3. Hauser SL, Cree BAC. Treatment of multiple sclerosis: A review. Am J Med. 2020;133(12):1380-90. DOI: https://doi.org/10.1016/j.amjmed.2020.05.049
4. Kappos L, Ziemssen T, Cohan S, Freedman MS, Arnold DL, De Stefano N, et al. Long-term improvement in quality-of-life outcomes during fingolimod treatment of multiple sclerosis. J Neurol Sci. 2021;430:118056. DOI: https://doi.org/10.1016/j.jns.2021.118056
5. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–52. DOI: https://doi.org/10.1212/WNL.33.11.1444
6. van Munster CEP, Uitdehaag BMJ. Outcome measures in clinical trials for multiple sclerosis. CNS Drugs. 2017;31(3):217-36. DOI: https://doi.org/10.1007/s40263-017-0411-7
7. Sormani MP, De Stefano N. Defining and scoring response to IFN-β in multiple sclerosis. Nat Rev Neurol. 2013;9(9):504-12. DOI: https://doi.org/10.1038nrneu rol.2013.150
8. Tallantyre EC, Binns C, Barkhof F, Filippi M, Rocca MA, Evangelou N, et al. Rehabilitative outcomes and neuroplasticity in multiple sclerosis. J Neurol Sci. 2023;448:120640. DOI: https://doi.org/10.1016/j.jns.2023.120640
9. Preziosa P, Rocca MA, Filippi M. Functional recovery in multiple sclerosis: mechanisms and clinical implications. Curr Opin Neurol. 2020;33(3):294-301. DOI: https://doi.org/10.1097/WCO.0000000000000821
10. Ontaneda D, Montalban X. Neurorehabilitation in multiple sclerosis: the role of functional reorganization. Mult Scler J. 2020;26(12):1491-1500. DOI: https://doi.org/10.1177/1352458520908142
11. D’Amico E, Zanghì A, Leone C, Patti F, Zappia M, Salemi G, et al. Real-world evidence in multiple sclerosis: limitations and opportunities. Neurol Ther. 2022;11(3):1207-26. DOI: https://doi.org/10.1007/s40120-022-00348-2
12. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73. DOI: https://doi.org/10.1016/S1474-4422(17)30470-2
13. Mc Nemar Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika. 1947;12(2):153–7 DOI: https://doi.org/10.1007/BF02295996
14. World Medical Association. Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4. DOI: https://doi.org/10.1001/jama.2013.281053
15. The Nuremberg Code (1947). Trials of War Criminals before the Nuremberg Military Tribunals under Control Council Law No. 10. Vol. 2, pp. 181–182. Washington, D.C.:U.S. Government Printing Office; 1949.
16. Chiaravalloti ND, DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008;7(12):1139-51. DOI: https://doi.org/10.1016/S1474-4422(08)70259-X
17. Montalban X, Hauser SL, Kappos L, Rnold DL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34. DOI: https://doi.org/10.1056/NEJMoa1601277
18. Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Soelberg Sorensen P, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362:416–26. DOI: https://doi.org/10.1056/NEJMoa0902533
19. Prosperini L, Fanelli F, Petsas N, Pozzilli C, Pantano P, De Giglio L. Long-term assessment of disability evolution in multiple sclerosis patients treated with disease-modifying therapies. J Neurol Sci. 2021;425:117448. DOI: https://doi.org/10.1016/j.jns.2021.117448
20. Ontaneda D, Thompson AJ, Fox RJ, Cohen JA. Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet. 2017;389(10076):1357–66. DOI: https://doi.org/10.1016/S0140-6736 (16)31320-4
21. Sastre J, Pareto D, Rovira À, Tintoré M, Río J, Barkhof F, et al. Brain atrophy in multiple sclerosis: clinical relevance and technical aspects. Neuroimaging Clin N Am. 2017;27(2):289–00. DOI: https://doi.org/10.1016/j.nic.2016.12. 008
22. Rocca MA, Filippi M. Functional MRI studies in multiple sclerosis. Neuroimaging Clin N Am. 2018;28(4):579–90. DOI: https://doi.org/10.1016/j.nic.2018.06.004
23. Petzold A, Fraser CL, Abegg M, Alroughani R, Alshowaeir D, Alroughani R, et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurology. 2017;16(10):797-812. DOI: https://doi.org/10.1016/ S1474-4422(17)30178-8
24. Tallantyre EC, Evangelou N, Constantine M, Binns C, Barkhof F, Filippi M, et al. The neuroplastic potential of exercise in multiple sclerosis. Mult Scler J Exp Transl Clin. 2020;6(1):2055217320908255. DOI: https://doi.org/10.1177/2055217320908 255
25. Nauta IM, Eijlers AJC, Balk LJ, Hulst HE, Polman CH, Barkhof F, et al. Cognitive impairment in multiple sclerosis: clinical relevance and relation to white matter damage. Mult Scler Relat Disord. 2019;33:68-75. DOI: https://doi.org/10.1016/j.msard.2019.05.017
26. Prosperini L, Tortorella C, Haggiag S, Pozzili C, Borriello G, Marra C, et al. Residual disability after multiple sclerosis relapses: role of self-perceived recovery. Mult Scler Relat Disord. 2022;59:103650. DOI: https://doi.org/10.1016/j.msard.2022.103650
27. Saidha S, Al-Louzi O, Ratchford JN, Oh J, Newsome SD, Prince JL, et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study. Ann Neurol. 2015;78(5):801-13. DOI: https://doi.org/10.1002/ana.24536
28. Filippi M, Preziosa P, Banwell BL, Barkhof F, Ciccarelli O, De Stefano N, et al. Multiple sclerosis. Nat Rev Dis Primers. 2018;4:43. DOI: https://doi.org/10.1038/ s41572-018-0041-3
29. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545-58. DOI: https://doi.org/10.1038/nri3871
30. Magliozzi R, Howell OW, Durrenberger P, Aricò E, James R, Reynolds R, et al. Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis. J. Neuroinflammat. 2019;16(1):259. DOI: https://doi.org/10.1186/s12974-019-1635-4
31. Sastre J, Tintoré M, Rovira À, Río J, Barkhof F, Montalban X. et al. Early markers of disease progression in multiple sclerosis. Lancet Neurol. 2020;19(5):388–403. DOI: https://doi.org/10.1016/S1474-4422(20)30067-0
32. Kappos L, O’Connor P, Radue EW, Polman CH, Hohlfeld R, Calabresi P, et al. Long-term effects of ocrelizumab in multiple sclerosis: results from pooled clinical trial data. Mult Scler Relat Disord. 2022;63:103857. DOI: https://doi.org/10.1016/j.msard.2022.103857
33. Tallantyre EC, Binns C, Barkhof F, Filippi M, Rocca MA, Evangelou N, et al. Rehabilitative outcomes and neuroplasticity in multiple sclerosis. J Neurol Sci. 2023;448:120640. DOI: https://doi.org/10.1016/j.jns.2023.120640
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jorge Arturo Garcidueñas-Aguilar, Olaf Dario Medrano-Peña, Amado Díaz de la Fe, Dania del Carmen Fernández Gutiérrez, Maria de los Angeles Robinson-Agramonte

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
