Rehabilomics
Keywords:
genomic medicine, omics sciences, epigenetics and physical therapy, rehabilitationAbstract
Sequencing the human genome laid the foundation for the development of omics sciences, and genomic medicine can transform rehabilitation by providing valuable information for the diagnosis, treatment, and prevention of diseases. The review aimed to describe the definition and main characteristics of omics sciences, including the most recent, rehabilomics, and explored their contributions and relationships with the clinical practice of rehabilitation within the framework of its new paradigms. The review methodology was based on searching and selecting articles on the topic using the Google Scholar search engine in PubMed, Medline, SciELO, and Cochrane databases. Keywords such as genomic medicine, omics sciences, epigenetics, and physical therapy were used. Articles from 2020 to 2024 were searched, selecting 33 publications that met the systematization objectives. The review addressed the essential elements of the main omics sciences. Rehabilomics is being introduced into rehabilitation as a result of the connections, relationships, and contributions of the omics sciences to rehabilitation and physical therapy. This led to the conclusion that profound discoveries in science, technology, engineering, and mathematics impose new commitment in addressing emerging rehabilitation paradigms. Advances in biotechnology, nanotechnology, and artificial intelligence offer new challenges. No discipline has the expertise to determine how to interconnect these innovations "at the patient´s bedside." Therefore, an interdisciplinary educational foundation among physicians, engineers, technologists, and scientists must begin with faculty support and curriculum changes.
Downloads
References
1. Irwin A. European Commission. Omics, sweet omics – curing the incurable, one disease at a time. Horiz EU Res Innov Mag. 2018 [acceso 12/02/2024] Disponible en: https://n9.cl/m95ll
2. International Rare Diseases Research Consortium. Progress Made in Rare Diseases Research. Paris, France: IRDirC [acceso 12/02/2024] Disponible en: http://www.irdirc.org/research/progress-made-in-rdr/
3. Ramírez C. Importancia de la biología molecular para la Fisioterapia moderna, Revista de la Universidad Industrial de Santander. Salud. 2011 [acceso 12/02/2024];43(3):317-20. Disponible en: https://pesquisa.bvsalud.org/portal/ resource/pt/lil-657139
4. Cornwall J, Osmotherly P. Genomic medicine and the future of physiotherapy, Australas Med J. 2014;7(8):361–2 DOI: 10.4066/AMJ.2014.2218
5. Sharma D, Ganai J, Khan SA. Potential Role of Physical Therapy in the Field of Genetic and Cellular Rehabilitation: A Review of Literature, International Journal of Health Sciences and Research, 2019 [acceso 12/02/2024];9(2):267-77. Disponible en: https://www.ijhsr.org/IJHSR_Vol.9_Issue.2_Feb2019/36.pdf
6. Kim ES, Prasad V, Schilsky RL. Has the Promise of Precision Medicine Been Oversold? Am Soc Clin Oncol Post. 2018 [acceso 10/08/2024];1-10. Disponible en: https://n9.cl/4o2lgf
7. Meyer JG, Schilling B. Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Rev Proteomics. 2017;14(5):419-29. DOI: 10.1080/147894 50.2017.1322904
8. Onder G, Giovannini S, Sganga F, Manes E, Topinkova E, Finne H, et al. Interactions between drugs and geriatric syndromes in nursing home and home care: Results from Shelter and IBenC projects. Aging Clin. Exp. Res. 2018 [acceso 12/02/2024];30,1015–21. Disponible en: https://n9.cl/ldels
9. Pastorino R, Loreti C, Giovannini S, Ricciardi W, Padua L, Boccia S. Challenges of Prevention for a Sustainable Personalized Medicine. J. Pers. Med. 2021;11:311. DOI: 10.3390/jpm11040311
10. Bonnechère B. Integrating Rehabilomics into the Multi-Omics Approach in the Management of Multiple Sclerosis: The Way for Precision Medicine? Genes 2023; 14:63. DOI: 10.3390/genes14010063
11. Zdziechowski A, Gluba A, Rysz J, Woldánska M. Why Does Rehabilitation Not (Always) Work in Osteoarthritis? Does Rehabilitation Need Molecular Biology? Int. J. Mol. Sci. 2023;24:8109. DOI: 10.3390/ijms24098109
12. Blackwell JA, Stanford KI. Exercise-induced intertissue communication: adipose tissue and the heart, Curr Opin Physiol. 2023;31:100626. DOI: 10.1016/j.cophys.2022.100626
13. Bonnechère B, Amin N, van Duijn C. The Role of Gut Microbiota in Neuropsychiatric Diseases—Creation of An Atlas-Based on Quantified Evidence. Front. Cell. Infect. Microbiol. 2022;12,831666. DOI: 10.3389/fcimb.2022.831666
14. Binzer S, Jiang X, Hillert J, Manouchehrinia A. Depression and Multiple Sclerosis: A Bidirectional Mendelian Randomisation Study. Mult. Scler. J. 2021; 27(11):1799–802. DOI: 10.1177/1352458521996601
15. Socała K, Doboszewska U, Szopa A, Serefko A, Włodarczyk M, Zielinska A, et al. The Role of Microbiota-Gut-Brain Axis in Neuropsychiatric and Neurological Disorders. Pharmacol. Res. 2021;172:105840. DOI: 10.1016/j.phrs.2021
16. Bonnechère B, Amin N, van Duijn C. What Are the Key Gut Microbiota Involved in Neurological Diseases? A Systematic Review. Int. J. Mol. Sci. 2022,23(22): 13665. DOI: 10.3390/ijms232213665
17. Macedo APA, Antunes GC, Vieira RFL, de Lima RD. Cross-talk muscle and brown adipose tissue: Voluntary physical activity, aerobic training, time and temperature. J Physiol. 2022;600(17):3901–2. DOI: 10.1113/JP283342
18. Ilia I, Nitusca D, Marian C. Adiponectin in Osteoarthritis: Pathophysiology, Relationship with Obesity and Presumptive Diagnostic Biomarker Potential. Diagnostics. 2022;12(2):455. DOI: 10.3390/diagnostics12020455
19. Pinckard KM, Shettigar VK, Wright KR, Abay E, Baer LA, Vidal P, et al. A Novel Endocrine Role for the BAT-Released Lipokine 12,13-diHOME to Mediate Cardiac Function. Circulation. 2021;143(2):145–59. DOI: 10.1161/CIRCULATIONAHA.12 0.0 49813
20. Dubey SK, Dubey R, Kleinman ME. Unraveling Histone Loss in Aging and Senescence. Cells. 2024;13(4):320. DOI: 10.3390/cells13040320
21. Dabrowski JK. Probabilistic inference of epigenetic age acceleration from cellular dynamics. Bio Rxiv. 2023 DOI:10.1101/2023.03.01.530570
22. Lopez C, Blasco M, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186:243–78. DOI: 10.1016/j.cell.2022.11.001
23. Borges M. Las ciencias ómicas: desenmascarando al ser humano. Microbiota desde cero. España: Fundación Instituto Roche; 2021 [acceso 20/07/2024] Disponible en: https://n9.cl/08lcz
24. Elagizi A, Kachur S, Carbone S, Lavie CJ, Blair SN. A Review of Obesity, Physical Activity, and cardiovascular disease. Curr Obes Rep. 2020;9(4):571-81. DOI: 10.1007/s13679-020-00403-z
25. Li G, Li J, Gao F. Exercise and Cardiovascular Protection. Adv Exp Med Biol. 2020;1228:205–16. DOI: 10.1007/978-981-15-1792-1_14
26. Bonanno M, Papa A, Cerasa MG, Maggio RS, Calabrò E, et al. Psycho-Neuroendocrinology in the Rehabilitation Field: Focus on the Complex Interplay between Stress and Pain, Medicina (Kaunas). 2024;60(2):285. DOI: 10.3390/medicina60020285
27. Kawamura T, Radak Z, Tabata H, Akiyama H, Nakamura N, Kawakami R, et al. Associations between cardiorespiratory fitness and lifestyle-related factors with DNA methylation-based ageing clocks in older men: WASEDA'S Health Study. Aging Cell. 2024;23(1):e13960. DOI: 10.1111/acel.13960
28. You Y, Chen Y, Zhang Y, Zhang Q, Yu Y, Cao Q. Mitigation role of physical exercise participation in the relationship between blood cadmium and sleep disturbance: a cross-sectional study. BMC Publ. Health. 2023;23(1):1465. DOI: 10.1186/s12889-023-16358-4.
29. Bordoni B, Escher AR, Castellini F, Vale J. The Sentient Cell: Implications for Osteopathic Medicine. Cureus. 2024;16(2):e54513. DOI: 10.7759/cureus.54513
30. Bordoni B, Escher AR. The osteopath's imprint: osteopathic medicine under the nanoscopic lens. Cureus. 2023;15(1):e33914. DOI: 10.7759/cureus.33914
31. He M, Jia Z, Wen Y, Chen X. Circ_0043947 contributes to interleukin 1_-induced injury in chondrocytes by sponging miR-671-5p to up-regulate RTN3 expression in osteoarthritis pathology. J. Orthop. Surg. Res. 2022;17(1):177. DOI: 10.1186/s13018-022-02970-4
32. Tan M, Feng Z, Chen H, Min L, Wen H, Liu H, et al Transcranial direct current stimulation regulates phenotypic transformation of microglia to relieve neuropathic pain induced by spinal cord injury. Front Behav Neurosci. 2023;17:1147693. DOI: 10.3389/fnbeh.2023.1147693.
33. Barh D, Blum KM (eds.). OMICS: Biomedical Perspectives and Applications, CRC Press. 2016 [acceso 12/02/2024];1-23. Disponible en: https://n9.cl/acgz8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jorge Enrique Martín Cordero

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.