Effects of Physical Rehabilitation on Gait Retraining in Hemiplegic Patients
Keywords:
physical rehabilitation, hemiplegia, gait analysis, P-Walk, functional mobilityAbstract
Introduction: Gait disturbances are one of the main motor sequelae following stroke, affecting independence and quality of life. Objective assessment of static and dynamic gait patterns and functional mobility capacity using technological tools allows for the evaluation of the effects of physical rehabilitation.
Objective: To analyze the effects of an intensive physical rehabilitation program on static and dynamic gait patterns and functional mobility capacity in hemiplegic patients, using the P-Walk platform.
Methods: An observational, descriptive, and longitudinal study was conducted at the International Center for Neurological Restoration from 2022 to 2024. Forty patients diagnosed with hemiplegia secondary to stroke were included. Plantar pressure, stance symmetry, step length, cadence, center of pressure displacement, and functional mobility were evaluated using the P-Walk platform and complementary clinical tests before and after rehabilitation treatment.
Results: Significant improvements were observed in stance symmetry, weight distribution among both limbs, step length, postural stability, and functional mobility.
Conclusions: Intensive physical rehabilitation promotes the reorganization of static and dynamic gait patterns, as well as a significant improvement in functional mobility in hemiplegic patients. This demonstrates the usefulness of the P-Walk platform as an objective tool for evaluating symmetry, stability, and functional progress during gait retraining.
Downloads
References
1. Arias FD, Ayala ME, Paredes JD, Muñoz SL, Lagla CD, Risueño FA, et al. Enfermedad cerebrovascular isquémica: diagnóstico y tratamiento. The Ecuador J Med. 2023;6(1):28-41. DOI: https://doi.org//10.46721/tejom-vol6iss12023-2841
2. Global health estimates: Leading causes of death. World Health Organization. 2025 [acceso 05/04/2025]. Disponible en: https://www.who.int/data/gho/data/themes/ mortality-and-global-health-estimates/ghe-leading-causes-of-death
3. Concepción PW, Camejo RL, Díaz MT. Comportamiento clínico de la enfermedad cerebrovascular en Policlínico Alcides Pino Bermúdez, Holguín. CCM. 2020 [acceso 03/11/202];24(2):621-636. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_ arttext&pid=S1560-43812020000200621&lng=es
4. González OL, Giraldo Á, Forero C. Vivir con secuelas de enfermedad cerebrovascular: experiencias y significados de las personas que las presentan. Hacia Promoción de la Salud. 2024;28(2):32-45. DOI: https://doi.org//10.17151/hpsal.2023.28.2.3
5. Mesa Y, Llanes HM, Yedra M, Ruíz J. La enfermedad cerebrovascular y su rehabilitación comunitaria. Medimay. 2020 [acceso 01/11/2025];27(4):461-72. Disponible en: https://revcmhabana.sld.cu/index.php/rcmh/article/view/1832
6. Li X, He Y, Wang D, Rezaei MJ. Stroke rehabilitation: from diagnosis to therapy. F Neurol. 2024;15:1402729. DOI: https//doi.org//10.3389/fneur.2024.14027 29
7. Tang Z, Zhao Y, Sun X, Liu Y, Su W, Liu T, et al. Evidence that robot-assisted gait training modulates neuroplasticity after stroke: an fMRI pilot study based on graph
theory analysis. Brain Res. 2024;1842(149113):149113. DOI: https://doi.org//10.1016/j.brainres.2024.149113
8. Lim JH, Park SJ. The effects of coordinative locomotor training on balance in patients with chronic stroke: meta-analysis of studies in Korea. J Korean Acad P Th Sci. 2020;27(2):36-47. DOI: https://doi.org//10.26862/jkpts.2020.09.27.2. 36
9. Cirstea CM. Gait rehabilitation after stroke: should we re-evaluate our practice?
Stroke. 2020;51(10):2892-4. DOI: https://doi.org/10.1161/STROKEAHA.120.032041
10. Naro A, Calabrò RS. Improving upper limb and gait rehabilitation outcomes in post-stroke patients: a scoping review on the additional effects of non-invasive brain stimulation when combined with robot-aided rehabilitation. Brain Sci. 2022;12(11):1511. DOI: https://doi.org//10.3390/brainsci12111511
11. Teodoro J, Fernandes S, Castro C, Fernandes JB. Current trends in gait rehabilitation for stroke survivors: a scoping review of randomized controlled trials. J Clin Med. 2024;13(5):1358. DOI: https://doi.org//10.3390/jcm13051358
12. Yan T, Liang W, Chan CWH, Shen Y, Liu S, Li M. Effects of motor imagery training on gait performance in individuals after stroke: a systematic review and meta-analysis. Dis Rehab. 2025;47(1):47–61. DOI: https://doi.org//.1080/09638 288.2024.2337091
13. Kato D, Hirano S, Imoto D, Ii T, Ishihara T, Matsuura D, et al. Effects of robot-assisted gait training within one week after stroke onset on degree of gait independence in individuals with hemiparesis: a propensity score-matched analysis. J Neuroeng Rehabil. 2025;22(1):42. DOI: https://doi.org//10.1186/s12984-025-01581-4
14. Pozo RJ, Gómez AP, Medrano J, Curay PA, Abalco DM. Análisis biocinemático de marcha hemiplejica. Podium. 2022 [acceso 08/06/2024];17(3):128–39 Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1996-24522022000301 028
15. Pelier B, Herrera AR, García JMV. Diagnóstico de deformidades podálicas para la prevención del pie diabético en la plataforma de marcha. Investigaciones Médicoquirúrgicas. 2022 [acceso 08/06/2024];14(2):772. Disponible en: https://revcimeq.sld.cu/index.php/imq/article/view/772
16. BTS Bioengineering. Manual de uso: BTS G-Walk, versión en inglés 3.0.0. Milán:
BTS SpA; 2014 [acceso 08/06/2024]. Disponible en: https://www.btsbioengineering.com
17. Asociación Médica Mundial. Declaración de Helsinki de la AMM – Principios éticos para las investigaciones médicas con participantes humanos. Wma.net. [acceso 03/11/2025]. Disponible en: https://www.wma.net/es/policies-post/ declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medic as-en-seres-hum anos
18. Lofrumento M, Tropea P, Picardi M, Antoniotti P, Micera S, Corbo M, et al. Effects of gait rehabilitation on motor coordination in stroke survivors: an UCM-based approach. Exp Brain Res. 2021;239(7):2107–18. DOI: https://doi.org//10.1007/s00221-021-06117-5
19. Mohan DM, Khandoker AH, Wasti SA, Ismail AI, Jelinek HF, Khalaf K. Assessment methods of post-stroke gait: a scoping review of technology-driven approaches to gait characterization and analysis. Front Neurol. 2021;12:650024. DOI: https://doi.org//10.3389/fneur.2021.650024
20. Chang MC, Lee BJ, Joo NY, Park D. The parameters of gait analysis related to ambulatory and balance functions in hemiplegic stroke patients: a gait analysis study. BMC Neurol. 2021;21(1):38. DOI: https://doi.org//10.1186/s12883-021-02072-4
21. Ferraris C, Cimolin V, Vismara L, Votta V, Amprimo G, Cremascoli R, et al. Monitoring of gait parameters in post-stroke individuals: a feasibility study using RGB-D sensors. Sensors (Basel). 2021;21(17):5945. DOI: https://doi.org//10.3390/s21175945
22. Wang Y, Mukaino M, Ohtsuka K, Otaka Y, Tanikawa H, Matsuda F, et al. Gait characteristics of post-stroke hemiparetic patients with different walking speeds. Int J Reh. Res. 2020;43(1):69–75. DOI: https//doi.org//10.1097/MRR.0000000000 000391
23. Seo M, Shin MJ, Park TS, Park JH. Clinometric gait analysis using smart insoles in patients with hemiplegia after stroke: pilot study. JMIR MHealth UHealth. 2020;8(9):e22208. DOI: https://doi.org//10.2196/22208
24. Echigoya K, Okada K, Wakasa M, Saito A, Kimoto M, Suto A. Changes to foot
pressure pattern in post-stroke individuals who have started to walk independently during the convalescent phase. Gait Posture. 2021;90:307-12. DOI: https://doi.org//10.1016/j.gaitpost.2021.09.181
25. Mesa Y, Llanes HM, Yedra M, Ruíz J. La enfermedad cerebrovascular y su rehabilitación comunitaria. Medimay. 2020 [acceso 01/11/2025];27(4):461-72. Disponible en: https://revcmhabana.sld.cu/index.php/rcmh/article/view/183
26. Li X, He Y, Wang D, Rezaei MJ. Stroke rehabilitation: from diagnosis to therapy. Front Neurol. 2024;15:1402729. DOI: https://doi.org//10.3389/fneur.2024.1402729
27. Tang Z, Zhao Y, Sun X, Liu Y, Su W, Liu T, et al. Evidence that robot-assisted gait training modulates neuroplasticity after stroke: an fMRI pilot study based on graph theory analysis. Brain Res. 2024;1842(149113):149113. DOI: https://doi.org//10.1016/j.brainres.2024.149113
28. Lim JH, Park SJ. The effects of coordinative locomotor training on balance in patients with chronic stroke: meta-analysis of studies in Korea. J Korean Acad Phys Ther Sci. 2020;27(2):36–47. DOI: https://doi.org//10.26862/jkpts.2020.09.27.2.36
29. Cirstea CM. Gait rehabilitation after stroke: should we re-evaluate our practice? Stroke. 2020;51(10):2892–4. DOI: https//doi.org//10.1161/STROKEAHA.120.0 32041
30. Naro A, Calabrò RS. Improving upper limb and gait rehabilitation outcomes in post-stroke patients: a scoping review on the additional effects of non-invasive brain stimulation when combined with robot-aided rehabilitation. Brain Sci. 2022;12(11):1511. DOI: https://doi.org//10.3390/brainsci12111511
31. Teodoro J, Fernandes S, Castro C, Fernandes JB. Current trends in gait rehabilitation for stroke survivors: a scoping review of randomized controlled trials.
J Clin Med. 2024;13(5):1358. DOI: https//doi.org//10.3390/jcm13051358
32. Yan T, Liang W, Chan CWH, Shen Y, Liu S, Li M. Effects of motor imagery training on gait performance in individuals after stroke: a systematic review and meta- analysis. Disabil Rehabil. 2025;47(1):47–61. DOI: https//doi.org//10.1080/09638288.2 024.2337091
33. Kato D, Hirano S, Imoto D, Ii T, Ishihara T, Matsuura D, et al. Effects of robot-assisted gait training within one week after stroke onset on degree of gait independence in individuals with hemiparesis: a propensity score-matched analysis. J Neuroeng Reh. 2025;22(1):42. DOI: https://doi.org//10.1186/s12984-025-01581-4
34. Lofrumento M, Tropea P, Picardi M, Antoniotti P, Micera S, Corbo M, et al. Effects of gait rehabilitation on motor coordination in stroke survivors: an UCM-based approach. Exp Brain Res. 2021;239(7):2107–18. DOI: https://doi.org//10.1007/ s00221-021-06117-5
35. Mohan DM, Khandoker AH, Wasti SA, Ismail AI, Jelinek HF, Khalaf K. Assessment
methods of post-stroke gait: a scoping review of technology-driven approaches to gait characterization and analysis. Front Neurol. 2021;12:650024. DOI: https://doi.org//10.3389/fneur.2021.650024
36. BTS Bioengineering. Manual de uso: BTS G-Walk, versión en inglés 3.0.0. Milán: BTS SpA; 2014 [acceso 08/06/2024]; Disponible en: https://www.btsbioengineering.com
37. Ferraris C, Cimolin V, Vismara L, Votta V, Amprimo G, Cremascoli R, et al. Monitoring of gait parameters in post-stroke individuals: a feasibility study using RGB-D sensors. Sensors (Basel). 2021;21(17):5945. DOI: httpos://doi.org//10.3390/ s21175945
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Silvia Jessica Ruiz Valdés, Dania del Carmen Fernández Gutiérrez

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
